
To Promote the Progress of Science and Useful Arts

The Director
of the United States Patent and Trademark Office has received

an application for a patent for a new and useful invention. The title
and description of the invention are enclosed. The requirements
of law have been complied with, and it has been determined that

a patent on the invention shall be granted under the law.

Therefore, this United States

grants to the person(s) having title to this patent the right to exclude others from making,
using, offering for sale, or selling the invention throughout the United States of America or
importing the invention into the United States of America, and if the invention is a process,
of the right to exclude others from using, offering for sale or selling throughout the United
States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2)
or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the
Maintenance Fee Notice on the inside of the cover.

Director of the United States Patent and Trademark Office

Maintenance Fee Notice
If the application for this patent was filed on or after December 12, 1980, maintenance fees
are due three years and six months, seven years and six months, and eleven years and six
months after the date of this grant, or within a grace period of six months thereafter upon
payment of a surcharge as provided by law. The amount, number and timing of the mainte-
nance fees required may be changed by law or regulation. Unless payment of the applicable
maintenance fee is received in the United States Patent and Trademark Office on or before
the date the fee is due or within a grace period of six months thereafter, the patent will expire
as of the end of such grace period.

Patent Term Notice
If the application for this patent was filed on or after June 8, 1995, the term of this patent
begins on the date on which this patent issues and ends twenty years from the filing date of
the application or, if the application contains a specific reference to an earlier filed applica-
tion or applications under 35 U.S.C. 120, 121, 365(c), or 386(c), twenty years from the filing date
of the earliest such application (“the twenty-year term”), subject to the payment of mainte-
nance fees as provided by 35 U.S.C. 41(b), and any extension as provided by 35 U.S.C. 154(b) or
156 or any disclaimer under 35 U.S.C. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date
on which this patent issues and ends on the later of seventeen years from the date of the
grant of this patent or the twenty-year term set forth above for patents resulting from appli-
cations filed on or after June 8, 1995, subject to the payment of maintenance fees as provided
by 35 U.S.C. 41(b) and any extension as provided by 35 U.S.C. 156 or any disclaimer under
35 U.S.C. 253.

Form PTO-377C (Rev 09/17)

(54) ECO-FRIENDLY CODEC-BASED SYSTEM
FOR LOW LATENCY TRANSMISSION

(71) Applicant: Schmied Enterprises LLC, San Jose,
CA (US)

(72) Inventor: Miklos Szegedi, San Jose, CA (US)

(73) Assignee: Schmied Enterprises LLC, San Jose,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 17/408,322

(22) Filed: Aug. 20, 2021

(65) Prior Publication Data

US 2022/0060753 A1 Feb. 24, 2022

Related U.S. Application Data

(60) Provisional application No. 63/069,475, filed on Aug.
24, 2020.

(51) Int. Cl.
H04N 19/85 (2014.01)
H04N 19/93 (2014.01)

(Continued)
(52) U.S. Cl.

CPC H04N 19/85 (2014.11); H04L 67/01
(2022.05); H04L 67/568 (2022.05);
(Continued)

(58) Field of Classification Search
CPC H04N 19/85; H04N 19/105; H04N 19/117;

H04N 19/119; H04N 19/182;
(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

8,489,403 B1 7/2013 Griffin et al.
8,645,763 B2 2/2014 Szegedi et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 114365503 A 4/2022
EP 4102851 A2 12/2022

(Continued)

OTHER PUBLICATIONS

Adobe Systems Incorporated. Public Patent License ISO 32000-1:
2008—PDF 1.7. Adobe Systems Incorporated. (2008). Accessed at
www.adobe.com/pdf/pdfs/ISO32000-1PublicPatentLicense.pdf?wa=
WWW20DAS.

(Continued)

Primary Examiner — Tracy Y. Li
(74) Attorney, Agent, or Firm — Wilson Sonsini Goodrich
& Rosati

(57) ABSTRACT

Disclosed herein is a system for providing a low-latency
transmission between a client and a server. The client may
be a thin client that leverages a codec to receive data
transmissions from the server over a dedicated connection
and need not require significant processing power. The
client-server system has additional capabilities for reducing
latency, including providing a view port for viewing portions
of documents in a buffer cache and providing a method for
blending image content by applying an alpha coefficient to
separated red, blue, and green image components.

18 Claims, 4 Drawing Sheets

US011638040B2

(12) United States Patent (10) Patent No.: US 11,638,040 B2
Szegedi (45) Date of Patent: Apr. 25, 2023

(51) Int. Cl.
H04N 19/80 (2014.01)
H04N 19/186 (2014.01)
H04N 19/423 (2014.01)
H04N 19/117 (2014.01)
H04N 19/105 (2014.01)
H04N 19/119 (2014.01)
H04N 19/436 (2014.01)
H04N 19/182 (2014.01)
H04L 67/01 (2022.01)
H04L 67/568 (2022.01)
G06F 3/0485 (2022.01)

(52) U.S. Cl.
CPC H04N 19/105 (2014.11); H04N 19/117

(2014.11); H04N 19/119 (2014.11); H04N
19/182 (2014.11); H04N 19/186 (2014.11);

H04N 19/423 (2014.11); H04N 19/436
(2014.11); H04N 19/80 (2014.11); H04N
19/93 (2014.11); G06F 3/0485 (2013.01)

(58) Field of Classification Search
CPC .. H04N 19/186; H04N 19/423; H04N 19/436;

H04N 19/80; H04N 19/93; H04N
21/4331; H04N 21/631; H04N 21/4438;

H04L 67/01; H04L 67/568; G06F 3/0485
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,896,652 B2 11/2014 Ralston
9,003,455 B2 4/2015 Hulse et al.
9,712,847 B2 7/2017 Malladi et al.

10,279,252 B2 5/2019 Gault et al.
10,390,039 B2 8/2019 Zhu et al.
10,445,901 B2 10/2019 Sato
10,523,953 B2 12/2019 Zhu et al.
10,575,007 B2 2/2020 Sun et al.
11,095,877 B2 8/2021 Kumar et al.

2003/0206179 A1 * 11/2003 Deering H04N 9/3185
345/589

2007/0047640 A1 * 3/2007 Venna H04N 21/64322
375/E7.279

2010/0064324 A1 * 3/2010 Jenkin H04N 21/42607
725/59

2010/0079480 A1 * 4/2010 Murtagh G06T 11/60
345/592

2010/0106798 A1 4/2010 Barreto et al.
2010/0223357 A1 9/2010 Einarsson et al.
2013/0332811 A1 * 12/2013 Chang G06F 40/18

715/217
2016/0373546 A1 * 12/2016 Lotfallah H04N 21/4331
2019/0342356 A1 11/2019 Thomas et al.
2020/0128307 A1 * 4/2020 Li H04N 19/119
2021/0011677 A1 1/2021 Rao
2022/0256253 A1 8/2022 Lazar et al.

FOREIGN PATENT DOCUMENTS

KR 20170041203 A 4/2017
WO WO-2016054651 A1 4/2016

OTHER PUBLICATIONS

Coldewey, D. Wave One aims to make video AI-native and turn
streaming upside down. Dec. 1, 2020. Accessed at www.techcrunch.
com/2020/12/01/waveone-aims-to-make-video-ai-native-and-turn-
streaming-upside-down/.
JPEG Committee. Overview of JPEGAI. Joint Photographic Experts
Group. (2021). Accessed at www.jpeg.org/jpegai.
MPEG. Moving Picture Experts Group. Home page. (2021).Accessed
at www.mpegstandards.org.
News. About JPEG. Joint Photographic Experts Group (2021).
Accessed at www.jpeg.org/about.
Schoon, B. Google’s family of AV1 codecs are targeted to be
royalty-free focusing on the algorithms that have expired or royalty-
free patents or licensing. 9to5Google. Jan. 16, 2021. Accessed at
www.9to5google.com/2021/01/16/google-android-tv-av1-codec-
requirement.
The JPEG XS. About JPEG XS. Joint Photographic Experts Group.
(2021). Accessed at www.jpeg.org.

* cited by examiner

US 11,638,040 B2
Page 2

U.S. Patent Apr. 25, 2023 Sheet 1 of 4 US 11,638,040 B2

U.S. Patent Apr. 25, 2023 Sheet 2 of 4 US 11,638,040 B2

U.S. Patent Apr. 25, 2023 Sheet 3 of 4 US 11,638,040 B2

U.S. Patent Apr. 25, 2023 Sheet 4 of 4 US 11,638,040 B2

ECO-FRIENDLY CODEC-BASED SYSTEM
FOR LOW LATENCY TRANSMISSION

CROSS-REFERENCE

This application claims the benefit of U.S. Provisional
Patent Application No. 63/069,475, filed on Aug. 24, 2020,
which is incorporated herein by reference in its entirety.

BACKGROUND

Many people in society today are familiar with using
network-connected computers to stream multimedia, includ-
ing reading articles, viewing images, watching movies, and
listening to music. Although large segments of consumers
largely restrict their online activities to such tasks, comput-
ing resources are not necessarily available to provide these
resources to all users quickly and cheaply. Many computing
devices require large amounts of computing power in order
to perform additional tasks not often performed by these
consumers. These computing devices, due to their increased
computing power, cost more as a result. Thus, even basic
media-processing capabilities are denied to large segments
of the population.

One method of reducing latency is to transmit smaller
amounts of information across a communication channel.
Engineers may use compression to reduce the bit rate of
digital media. Compression may decrease the cost of storing
and transmitting video information by converting the infor-
mation into a lower bit rate form. A codec (encoder/decoder
system) may be implemented to compress the information
prior to transmission and decode (reconstruct from the
compressed form) the digital media prior to playback.

For various types of media, including digital audio and
video, codec standards have been adopted (e.g., H. 264).
Standards may define options for syntax of an encoded
media bitstream, detailing parameters in the bitstream when
particular features are used in encoding and decoding. A
codec standard may also provide information about decod-
ing operations to perform and achieve conforming results in
decoding.

SUMMARY

There is a need for computing systems and methods that
can provide basic computing functions efficiently (e.g., low
latency when streaming) and with low cost to consumers and
businesses. The present disclosure provides these functions
by implementing a client-server system. The client-server
system can leverage a codec’s ability to compress media to
enable users to stream media without requiring a powerful
processor. Additional innovations as described herein can
maintain a low-latency environment while reducing mon-
etary costs to consumers and energy costs to the environ-
ment.

In one aspect, a system for providing a low-latency media
transmission, is disclosed. The system comprises one or
more servers for providing one or more transmissions of
media content, wherein the one or more transmissions
comprise a plurality of video frames, a client for presenting
the one or more transmissions of said media content. The
client includes a software application for blending one or
more pixels of the transmissions from one or more of the
servers. The client further includes a cache for storing a
downloaded media file, a codec for compressing the one or
more transmissions. The codec is installed on the client and

the server. The system also includes a dedicated communi-
cation channel connecting the client to the server.

In some embodiments, the client is a thin client.
In some embodiments, the blending comprises separating

a first pixel of a first video frame of a first transmission into
first red, green, and blue components and separating a
second pixel of a second video frame of a second transmis-
sion into second red, green, and blue components, weighting
a first combination of the first and second red components
with first alpha and a second alpha, weighting a second
combination of the first and second green components with
the first alpha and the second alpha, weighting a third
combination of the first and second blue components with
the first alpha and the second alpha, and producing a blended
pixel using the weighted combinations of first and second
red components, first and second blue components, and first
and second green components.

In some embodiments, the first alpha is a checksum of
equivalences of the first red, the first green, and the first blue
components.

In some embodiments, an equivalence of 0 produces an
opaque pixel and an equivalence of 1 produces a semi-
transparent blended pixel.

In some embodiments, the software application is con-
figured to produce a 25% latency improvement.

In some embodiments, herein the first transmission is
media content from a first widget and the second transmis-
sion is media content from a second widget.

In some embodiments, the first, second, and third com-
binations are sums.

In some embodiments, the weighting is performed in part
by normalizing the first alpha, the second alpha, and the third
alpha.

In another aspect, a system for providing a low-latency
media transmission is disclosed. The system includes one or
more servers for providing one or more transmissions of
media content. The one or more transmissions comprise a
plurality of video frames. The system also includes a client
for presenting the one or more transmissions of said media
content. The client includes a software application for blend-
ing one or more pixels of the transmissions from one or more
of the servers. The client further includes a cache for storing
a downloaded media file comprising an image with an
arbitrary resolution and a view port for viewing portions of
the downloaded media file. The client further includes a
codec for compressing the one or more transmissions. The
codec is installed on the client and the server. The system
further includes a dedicated communication channel con-
necting the client to the server.

In some embodiments, the downloaded media file is
entirely downloaded prior to viewing.

In some embodiments, the view port is capable of
responding to a scroll by a user to present local content of
the downloaded media file.

In some embodiments, local content is presented by
adjusting an offset in the cache.

In another aspect, a system for providing a low-latency
media transmission is disclosed. The system includes one or
more servers for providing one or more transmissions of
media content. The one or more transmissions comprise a
plurality of video frames. The system also includes a client
for presenting the one or more transmissions of the media
content. The client includes a software application for blend-
ing one or more pixels of the transmissions from one or more
of the servers. The client further includes a cache for storing
a downloaded media file. The client further includes a codec
for compressing the one or more transmissions. The codec

US 11,638,040 B2
1 2

5

10

15

20

25

30

35

40

45

50

55

60

65

does not apply a negotiation header to a transmission of the
one or more transmissions. The codec is configured to not
place a portion of a transmission of the one or more
transmissions in a buffer. The the codec is installed on the
client and the server. The system further includes a dedicated
communication channel connecting the client to the server.

In some embodiments, the codec comprises an encoder
and a decoder.

In some embodiments, the encoder compares a current
frame to a previous frame and encodes and decodes changes
using a lookup table.

In some embodiments, the encoder implements a low pass
filter to soften sharp changes in color from the previous
frame to the current frame.

In some embodiments, comparing a current frame to a
previous frame comprises calculating difference residuals.

In some embodiments, run length encoding is applied to
the difference residuals.

In some embodiments, the encoder produces a com-
pressed file in part from the run length encoded difference
residuals.

In some embodiments, the lookup table is configured to
provide a location of a corresponding pixel of a reference
frame

In some embodiments, the lookup table is configured to
provide a location of an offset pixel of a reference frame.

In some embodiments, the lookup table is configured to
provide pixels from a predefined palette.

In some embodiments, the encoder transmits audio inter-
leaved with higher priority than the video frames.

In some embodiments, the encoder separates a video
frame of the plurality of video frames into lines of pixels,
and further separates the lines of pixels into portions,
wherein the portions are processed using parallelism.

In some embodiments, the encoder produces a compres-
sion ratio of 100:1.

In some embodiments, the encoder applies run length
encoding.

In another aspect, a system for providing a low-latency
media transmission is disclosed. The system includes one or
more servers for providing one or more transmissions of
media content. The one or more transmissions comprise a
plurality of video frames. The system also includes a client
for presenting the one or more transmissions of the media
content. The client further includes a cache for storing a
downloaded media file comprising an image with an arbi-
trary resolution and a view port for viewing portions of the
downloaded media file. The client includes a software
application for blending one or more pixels of the transmis-
sions from one or more of the servers. The client further
includes a cache for storing a downloaded media file. The
client further includes a codec for compressing the one or
more transmissions. The codec does not apply a negotiation
header to a transmission of the one or more transmissions.
The codec is configured to not place a portion of a trans-
mission of the one or more transmissions in a buffer. The
codec is installed on the client and the server. The system
further includes a dedicated communication channel con-
necting the client to the server.

Another aspect of the present disclosure provides a non-
transitory computer readable medium comprising machine
executable code that, upon execution by one or more com-
puter processors, implements any of the methods above or
elsewhere herein.

Another aspect of the present disclosure provides a sys-
tem comprising one or more computer processors and com-
puter memory coupled thereto. The computer memory com-

prises machine executable code that, upon execution by the
one or more computer processors, implements any of the
methods above or elsewhere herein.

Additional aspects and advantages of the present disclo-
sure will become readily apparent to those skilled in this art
from the following detailed description, wherein only illus-
trative embodiments of the present disclosure are shown and
described. As will be realized, the present disclosure is
capable of other and different embodiments, and its several
details are capable of modifications in various obvious
respects, all without departing from the disclosure. Accord-
ingly, the drawings and description are to be regarded as
illustrative in nature, and not as restrictive.

INCORPORATION BY REFERENCE

All publications, patents, and patent applications men-
tioned in this specification are herein incorporated by ref-
erence to the same extent as if each individual publication,
patent, or patent application was specifically and individu-
ally indicated to be incorporated by reference. To the extent
publications and patents or patent applications incorporated
by reference contradict the disclosure contained in the
specification, the specification is intended to supersede
and/or take precedence over any such contradictory mate-
rial.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with
particularity in the appended claims. A better understanding
of the features and advantages of the present invention will
be obtained by reference to the following detailed descrip-
tion that sets forth illustrative embodiments, in which the
principles of the invention are utilized, and the accompany-
ing drawings (also “Figure” and “FIG.” herein), of which:

FIG. 1 illustrates a system for low-latency streaming with
a codec-based client device;

FIG. 2 illustrates a process for blending images from
video frames;

FIG. 3 illustrates an encoder architecture, in accordance
with an embodiment; and

FIG. 4 shows a computer system that is programmed or
otherwise configured to implement methods provided
herein.

DETAILED DESCRIPTION

While various embodiments of the invention have been
shown and described herein, it will be obvious to those
skilled in the art that such embodiments are provided by way
of example only. Numerous variations, changes, and substi-
tutions may occur to those skilled in the art without depart-
ing from the invention. It should be understood that various
alternatives to the embodiments of the invention described
herein may be employed.

Disclosed herein are systems and methods for implement-
ing a client device configured for secure and efficient data
transmission, presentation, and storage without requiring
significant processing power. The client device uses an
efficient codec to encode and decode data streams provided
by a server. The disclosed codec may apply a compression
ratio of 100:1 to media. The codec includes many innovative
features that enable users to receive high-quality audio,
video, and picture data efficiently. The disclosed system may
be relatively inexpensive and environmentally friendly, as it
may not require as much computing power as other con-

US 11,638,040 B2
3 4

5

10

15

20

25

30

35

40

45

50

55

60

65

ventional solutions, while providing quick access to images,
video, or audio content as well as saving battery power and
size. The disclosed system may encode and decode images
without the use of graphics processing units or other hard-
ware requiring significant power consumption.

The system disclosed, unlike other network systems in
which client devices share a communication channel
between themselves, can use a dedicated communication
channel from client to server. This eliminates the needs for
buffering of data and fixed negotiation headers, which may
slow down data processing. The disclosed system also
eliminates expensive support of legacy clients.

Additionally, the codec includes features for efficiently
compressing image data while reducing information loss.
Two such features are lookup tables and run length encod-
ing. The lookup tables used may be configured to provide
pixel values for video frames that reference previous frames
or perform interpolation to input pixel values. The codec
may also implement lowpass filters and noise reduction to
ease viewing. The codec may operate on rows of pixels in
images or video frames. This may enable massively parallel
encoding and decoding of images, as multiple rows of pixels
may be processed simultaneously. Additionally, processing
rows of pixels may enable the images output by the codec to
be sharper. Sharpness may be achieved by processing indi-
vidual lines, so an image may not have patches and blurs
resulting from the lossy compression of a convolutional
representation of an entire block. A small loss in an encoded
line may be almost unnoticeable.

Also included are a view port for viewing documents and
elimination of alpha channels to reduce image sizes. Using
the view port, a user can download an entire document into
the client’s cache instead of downloading portions of the
document that the user may scroll to. Although this may take
time initially, the user may scroll to different portions
seamlessly, without waiting for content to load. Elimination
of alpha channels from encoded images may result in data
savings, for example of up to 25% or in some instances
greater than 25%.

The disclosed system may have many uses in addition to
personal and enterprise computing environments. The sys-
tem may be used with broadcast and archival systems as
well. For example, a dedicated server may stream video
media to one or more client devices for presentation for large
amounts of customers, or may store large amounts of media
data for quick access by archivists and historians. The
system may be able to provide motion instructions that are
interpreted by remote controlled vehicles carrying the codec.
The system may also be able to stream video media viewable
by screens of cameras mounted to the remote controlled
vehicles.

The disclosed system may use efficient, low power-
consumption techniques for encoding and decoding, includ-
ing referencing previous frames when encoding video
frames, linear interpolation, implementing lookup tables,
and quantization.
System

FIG. 1 shows a system 100 for implementing a processor-
free client 110. The system 100 includes a server 160, a
processor-free client 110, a codec 120, and a communication
link 150. The system 100 of FIG. 1 may include a dedicated
connection between client 110 and server 160. Using the
connection in such a manner can be advantageous because
the system 100 need not have to buffer data that is being
transmitted from the client 110 to the server 160. Because
the channel may be dedicated and is not shared, there is no
feedback that may reduce the bit rate or sampling rate.

Bandwidth may be more predictable than browser traffic.
Additionally, the system 100 may reduce latency by elimi-
nating timestamps. Further, the disclosed system 100, in
using a client 110 that does not have a processor, may reduce
hardware complexity and power consumption compared to
other existing systems.

The server 160 may provide resources, such as streaming
media (e.g., audio, video, or images) to the client 110. The
server 160 may be a physical server machine or a cloud
server. The server 160 may transmit files to the client 110
encoded by the codec 120, which are then decoded at the
client 110. The server 160 may use a video card, a sound
card, or a graphics card to perform one or more digital to
analog conversions of media content. The hardware may
perform digital to analog conversion using a reconstruction
filter. The hardware may include a random access memory
digital to analog converter (RAMDAC) to translate pixel
data into an analog signal that a monitor of the client 110
may display as an image or video frame. The server 160 may
be configured such that pixel dimensions (e.g., 1920·1080)
of images or video need not be transmitted to the client 110.

The server 160 may be an edge data center or cloud data
provider connected by the client 110 through a dedicated
channel. Such a dedicated connection may eliminate all
other network traffic and establish net neutrality from the
server 160 to third party providers. This may enable cost
savings for a network channel provider. Bandwidth becomes
predictable.

The client 110 may be a computing device for providing
media to a user. The client 110 may not require a sophisti-
cated processor and can present to users media provided by
the server 160. The client 110 may include a monitor and
speakers for transmitting video content. The client 110 may
be a desktop or mobile computing device, such as a mobile
phone, tablet computer, or laptop. The client 110 may be a
thin client 110 optimized for establishing a remote connec-
tion with the server 160, providing an interface through
which a user can remotely perform tasks using the server
160, as well as accessing stored media content and resources
stored on the server 160. In order to provide this function-
ality, a thin client embodiment may support peripherals
including keyboards, mouse, monitors, jacks for sound
peripherals, and ports for various devices. The client 110
may include tools such as a graphical user interface, a web
browser, and a terminal emulator to enable access to server
160 functions and resources.

The client 110 may include remote desktop protocol
software installed to replicate screen content on its display.
For example, the remote desktop protocol software may
replicate content provided by one or more microservices on
one or more servers. The remote desktop protocol software
may combine the presentations of these microservices by
using an algorithm for blending video content, e.g., the
algorithm described in FIG. 2.

The client 110 may be configured to avoid the use of
negotiation headers. Not using negotiation headers may
reduce the engineering resources needed to implement and
maintain the codec 120. Additionally, not using negotiation
headers may remove constraints. To ensure that pixels are
placed appropriately within the image, the codec 120 may
append end of file (EOF) and end of line (EOL) codes, which
may be single data values.

The codec 120 may encode and decode media provided
by the server 160 in order to compress the data while
enabling high-quality playback on the client 110. The codec
120 may include an encoder and a decoder.

US 11,638,040 B2
5 6

5

10

15

20

25

30

35

40

45

50

55

60

65

The encoder may be the encoder 300 of FIG. 3 or, in other
embodiments, may be configured to produce output com-
pliant with other media encoding standards. The encoder
may apply multiple processing steps to compress audio,
image, or video content. For example, the codec 120 may
apply lookup tables, calculate difference data, and filter the
data during data processing. The codec 120 may be config-
ured to enable users to remotely stream media content
provided by the server 160 through a dedicated channel.

The encoder may receive a sequence of video frames and
produce compressed information as output. In various
embodiments, the encoder may determine frames that rep-
resent differences between frames (e.g., a current frame and
a previous frame) to produce predicted frames. The encoder
may save the residual difference values. The encoder may
apply frequency transformation and quantization (in that
order, or in reverse order) to frames. When the residual
difference values are needed, the encoder may apply an
inverse quantizer and inverse frequency transformer. The
encoder may include an entropy coder to perform techniques
such as arithmetic coding, differential coding, Huffman
coding, and run length encoding. The entropy coder may
stream the compressed video information immediately fol-
lowing compression, avoiding buffering. The encoder may
use run length encoding of arbitrary number of blocks to
support low latency parallel encoding and decoding.

The decoder may receive the compressed information
over the communication link 150 and apply various decod-
ing operations to form a reproduction of the video. For
example, an entropy decoder may perform operations such
as arithmetic decoding, differential decoding, Huffman
decoding, and run length decoding. The decoder may apply
difference information to reflect animation changes from the
key frame. The decoder may then apply inverse quantization
and/or inverse frequency transformation (in that order or in
reverse order) to reproduce the video.

The communication link 150 may connect the server 160
and client 110. The communication link 150 may be, e.g.,
Ethernet or Wi-Fi. The communication link 150 may be a
dedicated connection between the server 160 and client 110.
Implementing the connection as a dedicated connection may
provide for predictable available bandwidth, as there would
be no interference from additional network traffic. Providing
a dedicated channel may also reduce or eliminate the need
for buffering of media data sent between the client 110 and
server 160. Eliminating buffering confers additional benefits
with respect to reducing latency, as without buffering, there
is no need to capture strict time information and jitter
reduction may be performed by the network. Additionally,
eliminating buffering reduces support costs.

The view port 140 may represent publications and carto-
graphical content using the codec 120 to decode content
with arbitrary resolution. When a user clicks to view an
image, the entire image is downloaded, filling a frame buffer
cache. The local content is shown by adjusting an offset in
the cache 130. This process enables subsequent page loads
to be performed more quickly than those performed by
loading content as the user scrolls. The system 100 reduces
hardware density and energy use, while preserving smooth
scrolling between portions of an image or document.

The cache 130 stores the document in memory. The entire
document may be loaded into the cache 130 when it is
requested from the server 160. When a user manipulates the
view port 140, the system adjusts an offset in the cache 130
to display content associated with the location of the client
view port 140.

The content 170 may be the content for display in the
view port 140. The content 170 may be, e.g., an article or a
map. The content 170 may comprise image-based content
and may be of any arbitrary resolution.
Image Transmission

FIG. 2 schematically illustrates a process 200 for trans-
mitting image data hosted on multiple servers to the client
110. In an example scenario, a first microservice application
may run as a first widget on a first server and a second
microservice may run on a second server as a second widget.
The servers may encode media using the codec 120 and
transmit to the client 110, which may be located on a third
server. The media may be blended for presentation on the
desktop. For example, one of the widgets may be presented
transparently on top of or behind the other, or vice-versa.
The widgets may be presented in particular configurations
on a desktop of the client (e.g., side by side). The system
disclosed herein may produce a blended image comprising
the visual configuration of the widgets and transmit the
blended image to the client 110.

The system may blend an image by applying an alpha
channel to each color component (e.g., red, green, and blue)
of each pixel value of the image. For example, a first red
component of a first image and a second red component of
a second image may be blended by multiplying a first alpha
by the first red component and dividing by two and summing
it with a product of a second alpha and the second red
component, also divided by two. This process may be
repeated for the blue and green components. In other
embodiments, the codec 120 may perform other types of
multiplicative and additive operations with respect to color
and transparency factors. The blending disclosed may
reduce the color encoding of the pixels in the frame from 32
to 24 bits, removing the need for an 8-bit alpha.

FIG. 2 illustrates this operation for blending a desktop
video frame 220 and a widget video frame 210 to produce
a blended video frame 240. The desktop video frame 220 has
its own red, green, and blue components with an associated
alpha. The widget video frame 210 has its own red, green,
and blue components with an additional associated alpha.
These two frames are blended additively to produce the
blended frame without extra normalization. The embodi-
ment of FIG. 2 may be used to provide clients with interfaces
for interacting with widgets on their client 110 desktop as
they are accustomed to doing on standard computers.

In a desktop microservice, an algorithm may be imple-
mented as follows. The algorithm may retrieve a pixel value
associated with a widget, or of the intersection of two or
more widgets. If the pixel is not associated with an inter-
section of the widgets co-located on the screen, the algo-
rithm may transmit the pixel un-altered. If the pixel does
correspond to an intersection of two or more widgets, it may
be retained if it is opaque with an alpha of 100%. The
algorithm may choose to present the pixel of the widget that
is furthest to the front of the screen, or it may choose to
present a sum of alpha channel-weighted pixels from the
widgets to be presented on the screen. The alpha channel
may itself be weighted by the number of bits used to encode
the color of a pixel. For example, the alpha channel may be
normalized to a range from 0 to 255, for 8-bit encoded
colors. For example, instead of alpha being with a range of
zero to one, alpha may be within a range of zero to 255, with
255 representing a 100% opaque pixel and 0 representing a
100% transparent pixel. A blended color value may be
calculated by multiplying alpha/256 by each RGB color
component divided by two. For example, a color may have
[R, G, B, a]=[128, 128, 128, 128=50% transparency], and

US 11,638,040 B2
7 8

5

10

15

20

25

30

35

40

45

50

55

60

65

another color may have [R, G, B, a]=[256, 0, 0, 64=25%].
Blending the two may yield, e.g., for the red color value,
128/256*128/2+64/256*256/2=32+32=64. The system may
use a similar process to calculate the G and B values. The
alpha channels corresponding to each of the colors may have
different values. If the pixel value chosen is not opaque, it
may be blended with the desktop value to create a transpar-
ent image overlaid on top of the desktop. This may be
performed for every image representing a widget overlaid on
the desktop. The opacity of a pixel in a widget image may
be represented by a reserved 24th bit or an extra 25th bit.

Alpha may be produced by a checksum of equivalences of
red, green, and blue components. A least significant bit
(LSB) may be reserved to indicate whether to use the pixel
as is or blend it with the background. For example, an LSB
of 0 may represent an opaque pixel, while an LSB of 1 may
represent an alpha-weighted pixel that is blended into the
background (semi-transparent blended pixel). The interpre-
tation of the LSB may be inverted in case of full black
(0,0,0) to preserve opaque black.

In many embodiments, a widget is blended with a desk-
top. The desktop may be larger than the widget and fully
opaque, while the widget, being a smaller object than the
desktop, may have areas (e.g., near the edges) that are fully
transparent. To encode these areas for viewing, the system
may use run-length encoded references to other fully trans-
parent widget pixels to make only the desktop underneath
the widget visible in these regions. The system may copy
one or more blocks of N pixels entirely from a reference
buffer. The server may persist these blocks as blocks of
transparent pixels with alpha=0. These blocks may be used
to form a background image, upon which one or more
widget images may be blended. For example, two widget
image elements may be isolated from their backgrounds
using an alpha mask (rendering the image elements opaque
and their backgrounds transparent). When the overlapping
image elements are placed on the desktop, overlapping
image regions of the overlapping image elements may be
blended. The codec may persist non-overlapping regions of
the widget image elements. Finally, the desktop may be
viewable in place of the image element backgrounds that
were rendered transparent by the alpha mask.
Encoder Architecture

FIG. 3 illustrates an encoder architecture for the codec
120, in accordance with an embodiment. The embodiment
300 is configured to encode frames of video data, but the
system 100 may also implement codecs configured for
transmission and playback of compressed audio or image
files. The encoder 300 may be configured to operate in one
or more modes, depending on the type of media communi-
cated from the server 160 to the client 110. The encoder 300
system may be implemented as an operating system module,
as part of an application library, or as a standalone applica-
tion. The encoder consistent with the architecture 300
described herein may receive a sequence of video frames
from a video source and produce compressed video data that
is then output to the dedicated communication link 150
between client 110 and server 160. Generally, the encoder
300 compresses individual video frames before transmis-
sion. The encoder 300 compares the information in a current
frame 320 to that from one or more previous frames using
one or more lookup tables 350. For example, the lookup
tables 350 may have pixel values which may relate to
corresponding pixel values from previous frames. The rela-
tion may be a direct match to a previous pixel value or may
be an offset in space. The circuit may store a difference
between the raw pixel values of the frame and the lookup

table values. If the raw values and lookup table values are
largely identical, the difference may include a large number
of zero values, which may be compressed using run-length
encoding. Run-length encoding may be implemented in
multiple ways. In some embodiments, run-length encoding
may encode a set of repeating pixels as a code that preserves
the pixel color information while requiring less memory. For
example, a string “WBBWWW” may be encoded as “W2B3
W.” In another embodiment, a run-length encoding algo-
rithm may observe, in one row, a set of pixels that are the
same, and use a gradual slope to determine a relationship
between the pixels and create a reduced-memory represen-
tation. In this manner, a relatively small amount of pixel
information may need to be transferred to the client 110,
yielding a compression (e.g., of at least 12-16%) of the
original size of the raw pixel frame. A frame may use
multiple blocks of raw data. The frame data may be com-
pressed using a lookup table. For example, a frame repre-
senting a 98% black and white document may use black and
white from a LUT to compress the data from 24 bits to one
bit. Run length encoding may further compress it an addi-
tional 50%, so key frames (e.g., a first transferred frame)
may be transmitted as fast non-key frames per 1024 bytes,
for example. Video may be encoded in the same manner as
documents. As with documents, the system may filter the
video. The encoder may perform a black-gray-white transi-
tion instead of a direct black-white. Also, the encoder may
separate LSB values into the DIFF block and transfer only
part of it. Audio may be transmitted interleaved with the
visual content and may be compressed using encoding tasks
such as quantization and masking. Audio may be transmitted
as pulse code modulation (PCM). The encoder 300 may
receive video as a sequence of video frames at a rate of, e.g.,
60 frames per second. An arriving frame may be stored in a
temporary memory storage area including multiple frame
buffer storage areas. A frame selector may select a current
frame 320 for processing from a storage area. The architec-
ture 300 comprises a compression circuit including a raw
data buffer 330, a difference encoder 340, one or more
lookup tables 350, one or more multiplexers 360, and an
output data stream. With respect to the video frame, the
encoder 300 may cut every line into portions, which may
then be encoded in parallel through two parallel channels.
Portions may be short enough to be processed with more
parallelism. The encoder 300 of this embodiment may
compress an image to a small percentage (e.g. about six
percent) of its original size.

The raw data stream may be uncompressed media (e.g.,
images, audio, or video) sent from the server 160 to the
client 110. Raw video may be transmitted as individual
image frames interleaved with audio. The encoder 300 may
transmit the audio with higher priority than the video in
order to avoid glitches from the transmission. A raw video
frame may be an array of uncompressed pixels. A pixel may
have a color depth of 24 bits.

The difference encoder 340 may store differences between
the output of the lookup table and the raw, uncompressed
data. The client 110 may decode the video using the differ-
ence data. Where there is not a difference between the
lookup table output and the raw data, the encoder 300 may
save space by run length encoding difference values of 0.
The encoder may send the buffers of more significant bits
compressed with the LUT first. Then, the encoder may send
some of the values from the differences as we see fit. The
next frame can encode the rest of the differences. For a 20%
compression ratio, the encoder may encode the differences
with the lookup tables and, which may fill 15% of the

US 11,638,040 B2
9 10

5

10

15

20

25

30

35

40

45

50

55

60

65

original buffer. The differences may add 20% more to the
buffer, filling 35%. As this amount may fill too much of the
buffer, the encoder may submit just 1⁄4 of difference encoder
data from a difference buffer (for example, removing least
significant bits (LSBs)). The resulting stream may be 20% of
the size of the original. The next frame may still see LSB
differences and encode 15%. The difference encoder 340
may pack difference bits to the end of the stream, so they
may be sent or may be recalculated and sent in the next
frame. For example, there may be a noisy flat surface of 100
pixels with pixel values between 125 and 131. The encoder
300 may encode a run length of (100,LUT(128)) in 2 bytes
and add an additive buffer to the end with the noise of 100·3
bits. If the noise does not fit, the encoder 300 may eliminate
it and it will appear as a difference at the next frame having
a chance to be transmitted.

The lookup tables (LUTs) 350 compare pixels from a
current frame 320 to a reference frame (e.g., a previous
image frame) to encode values for the current frame 320.
The lookup tables 350 may be configured as arrays that
receive as inputs coordinates (e.g., (x,y) coordinates) of
pixel locations and provide locations of reference pixels
from a reference image. The lookup tables 350 may be
stored in memory on the server 160 or on the client 110.
Using a lookup table to retrieve such values from memory
may be more efficient than performing computations each
time a frame is to be compressed. The tables may be
precalculated or configured based on the content in the
frames being transmitted. For example, if most of the pixels
in the video frames do not change from frame to frame, the
lookup table, when provided with an (x,y) coordinate, may
reference a corresponding or equivalent (x,y) coordinate for
the previous frame 310. The lookup tables 350 may be
populated with pixel values from previous frames which
may be offset. They may also contain pixel values of the
current frame for key frames. For example, the lookup tables
350 may apply offsets of less than 24 bits of cached memory
to previous pixel values. The lookup tables 350 may be
populated with the pixel values of the previous frame 310
without any changes. The lookup tables 350 may also be
populated with pixel values offset in particular directions
(e.g., left). For texts and graphs, the lookup table may look
up a value in a predefined palette of pixels for texts and
graphs. The lookup tables 350 may be implemented using
comparators. The comparators may support frame rate mul-
tiplication and fading. Additionally, using LUTs may
remove artifacts of older compression formats caused by
macroblocks of MPEG and H.264.

The multiplexer 360 may select the data to be provided as
the compressed file and may select between the data from
the LUT buffer and the raw data buffer 330 to encode. In
order to select the correct data to compress, the multiplexer
360 may receive as input latency and low pass filter require-
ments from the server 160. The data from the raw data buffer
330 may be selected when it is smaller in size than the data
from the LUT buffer. The difference data may be sent in a
second buffer. For example, for black and white text with
some font smoothing (TrueType), the encoder may send
LUT data of 0 and 1 run length so that text is readable. The
encoder may then send some differences (colored gray) in a
second buffer after. If some granularity does not fit, the
difference may be sent in the next frame compared to the
next reference frame.

The encoder 300 may provide additional augmentations to
the compressed data. The encoder 300 may implement a low
pass filter to reduce jarring color transitions from frame to
frame, in order to protect human eyes. For example, if a

pixel were to transition from black in a previous frame 310
to white in a current frame 320, the low pass filter may
encode the current pixel value as gray rather than white. In
other cases, the low pass filter may smooth or blur one or
more areas of the video frame in order to reduce jarring
contrasts from frame to frame. The encoder 300 may also
implement noise reduction. The least significant bits may be
ignored by the encoder 300 or added to the end of the burst.
For example, if a desired compression ratio is 20% and the
buffer is 15% full, the encoder 300 may add 5% of noise.

The compressor may apply run length encoding on repeat-
ing patterns within the image, improving the compression
ratio. This may enhance the compression, for example, by
another 50%.

The frame code 370 shows codes for a raw encoded frame
(4Rwbwb), a difference encoded frame (3P0303)(2Rww),
carriage return codes (CRLF), and end of file (EOF) codes.

The programmable array logic 380 may be circuitry
configured to implement any of the functions performed by
the encoder 300. For example, the programmable array logic
may implement one or more LUTs, difference encoders, and
multiplexers.

The encoder system may perform progressive encoding.
For example, the system may process a subset of lines of the
image in parallel, before processing additional subsets of
lines until all subsets of images have been processed.
Decoder System

The decoder system may receive encoded data for a
compressed frame from the encoder 300 and produce output
including decoded frames. The decoder may perform decod-
ing tasks such as generating pixels iteratively from run
length encoding and looking back and in tables. Pixel data
may be additive, when a second array of differences arrive.
Any decoding delays may be improved by parallel decoding
later chunks in the stream if the network is too fast. When
a frame is decoded, it may be stored in a frame buffer.
Codec

The system disclosed may use a low-latency audio, video,
and graphics codec. The codec may leverage a dedicated
channel, providing for predictable bandwidth. To reduce
latency, the codec may attach image data to audio data and
may omit timestamps. The codec may not require session or
frame headers. The codec may be implemented on micro-
controllers without requiring floating point instructions. The
codec may process a media stream in a highly parallel
fashion. The codec may use signal processing operations
that are power-efficient.

The codec may be highly suitable for use with remote
office applications, videoconferencing, remote driving,
internet browsing, and local broadcasting.
Specifications

The codec may be able to compress an image to one-half
its size, one-third its size, one-fourth its size, one-fifth its
size, one-sixth its size, or less.

The codec may require a small portion of the connection
bandwidth in order to encode and decode media effectively.
For example, for a 200 Mbps connection, the codec may use
a reserved 25 Mbps. Of this 25 Mbps, 20 Mbps may be used
for video and about 3 Mbps may be used for audio. In some
embodiments, the codec uses less than about 10%, less than
about 15%, or less than about 20% of the network band-
width. This may enable encoding of 64,000 pixels per color
frame (e.g., VHS quality video at 60 Hz, CD quality at 16
Hz, HD quality at 4 Hz and 4K quality at 1 Hz).

The codec may implement progressive encoding. For
example, in some embodiments, the codec may subsample
an image, processing 2·2 or 4·4 blocks of the image. This

US 11,638,040 B2
11 12

5

10

15

20

25

30

35

40

45

50

55

60

65

may result in a 5% or 1.25% compressed media ratio. As in
many applications (e.g., text chat applications, text docu-
ment updates) a user may make small changes that do not
update the entire frame in which content is presented,
performing progressive encoding may smoothen any sudden
changes in content. The progressive encoding may be con-
figured to prioritize encoding of updated or updating pixels
on the screen first.

The codec may not require any restrictions on resolution.
A 5Gb universal serial bus (USB3) may replace a high-
definition multimedia interface (HDMI) channel may pro-
vide a true color lossless 4K stream with a 5· compression
ratio. The codec may enable parallel processing.
Compression

Compression of 20% may be achieved in the following
way: Graphics that are not color rich may use lookup tables
for coarse values using two-bit indices in palettes of four
pixels. Text may be encoded using one bit.

Using other methods, images may rely on interpolation
and a 256-color palette for flat and transient surfaces. When
elements of images are updated, Subsequent updates may
process residual frames. Using large palettes may increase
encoding complexity and may make it more difficult for
decompression to be performed in parallel. By contrast, the
disclosed codec may use two, four, or sixteen-pixel palettes.

Some images may be able to transfer 2 bits per color
component at a time. Encoding an image may employ four
additional progressive updates to refine the image. The bit
rate may be reduced by 4· in an update.

In some embodiments, the codec may compress real-
world images with linear slope interpolation. Linear slope
interpolation may not require floating point instructions for
embedded and microcontroller applications. If at least eight
pixels are encrypted at a time, the compression ratio may
reduce to 20%.
Power Reduction

By not requiring floating point operations, implementing
the disclosed codec may reduce power consumption. Addi-
tionally, due to the reduced power usage, smaller batteries
may be required for processing electronics used to imple-
ment the codec.
Latency Reduction

The disclosed codec reduces latency by using a dedicated
channel and by not using timestamps. Additionally, using
uncompressed audio may reduce any decompression delays.

Additionally, the codec processes images such that there
is not a dependency between lines of pixels. Lines of pixels
may be split into arbitrary numbers of blocks until a 20%
compression ratio is reached.
Audio

In some embodiments, the disclosed codec may provide
200 KHz audio, without compressing audio. The audio may
be 200 kHz 16-bit sampled pulse code modulated (PCM)
data. The codec may use a 100 Hz nominal framer rate,
resulting in 4000 bytes of audio for a frame of 10 ms that
may transfer in less than 1 ms over a 100 mbps channel,
providing the low latency required.

The audio may be encoded prior to encoding video. Delay
added to audio may be as low as 10 ms, driven only by the
channel. Once a buffer of audio is collected, round-trip time
for sending and receiving the audio may be only limited by
the network bandwidth. An audio buffer comprising an audio
block may not need to be processed (e.g., using a discrete
cosine transformation). Instead, an audio block may be
provided as pulses or may be slightly compressed using
linear interpolation or run-length encoding. In some embodi-
ments, low-importance audio may be compressed (e.g.,

silence or background noise). The codec may use video
signal encoding algorithms to encode audio.

Audio may provide synchronization for the media con-
tent. Audio may be synchronized with the first display of the
frame. Once the frame buffer is filled, the codec may swap
the frame when it has completed playback of a block of
audio, which may start processing of a next audio block.
Progressive video updates may arrive during audio play-
back.

Audio may not be buffered or delayed. Quality of service
may be achieved because the small bandwidth requirements
of the codec may ensure that the channel is not saturated.
Buffering may be limited to waiting until the previous audio
buffer was played.
Base Frequency and Resolution

The codec may not employ a nominal frame rate. Instead,
the length of the audio sample may specify the length of the
video frame. The frame may not have a negotiation header
to specify resolution of frame rate. This may reduce support
and testing costs.

Small changes may be performed immediately if suffi-
cient bandwidth is given with no delay. This may support
real-time rendering of typing.

The codec may use a low pass filter of a video for
convenience and compression on the encoder side. The
codec may use no flickering on audio to support a diverse
array of uses, including high-frequency voice. Filtering may
reduce flickering, artifacts, and unnecessary bandwidth
increases of noisy images. Higher frame rates may be
filtered in the decoder code of the display.
View Port and Client Buffering

The codec may interoperate with a simple client, reducing
fixed development costs. The codec may also reduce the
variable cost of client hardware, as well as support engi-
neering and audit costs.

The view port may have the following characteristics. The
input data stream may be expanded into the memory of the
client device featuring the viewpoint. The memory contains
a rectangle bigger than what is displayed to the user, to
enable more content to be stored for fast scrolling. The view
port may be implemented using a double buffering technique
reading from one and writing to the other buffer. The buffers
may be swapped when audio of a read buffer stops playing
and the first frame of a subsequent buffer plays. During a
channel reset, if audio is interrupted or truncated on user
input, the client may still display the frame buffer after the
previous audio frame has stopped playback.

When a new image or frame is displayed in the view port,
the audio may start playing while the image is progressively
updated. For images, there may be a variable length array of
24 bit pixels. The size of the array may be up to 246 pixels
long, but 2, 4, and 16-pixel palettes may be used. A pixel
may represent a 1⁄60 degree viewing angle to maintain text
quality.

The view port may be manipulated by client-driven
actions, such as scrolling. The client may implement paging,
scrolling, zooming, or cropping lines of the view port.
Zooming may preserve image brightness and avoid inter-
lacing or coarse subsampling. The view port may set a
default height which may be the width of the previous frame.
If a bigger image is loaded, it may follow into a new frame
buffer. The codec may use high contrast interpolation. A
two-pixel flat surface meeting another two-pixel flat surface
may appear to have a sharp edge

Ending a session may reset the client buffer.
Sections

There may be four section primitives of the codec.

US 11,638,040 B2
13 14

5

10

15

20

25

30

35

40

45

50

55

60

65

A session may be a set of frames. Resetting a session may
mean losing transmission of the media content. All local
cache may be discarded. Session reset may be defined by the
carrier. Upon startup, the client may load a black frame and
silent audio. A server may send a reference frame (or I
frame) by eliminating references to the previous frames and
overwriting all pixels.

A frame may be a physical image and matching audio
samples. Starting the frame may reset a cursor within the
view port to a (0,0) reference point for subsequent data. The
codec may reference and reuse pixels of a previous frame for
a current frame. Frames may eventually be lossless, blend-
ing with latter frames with smaller gradual updates.

A row may be a horizontal line of pixels. Rows may be
split into multiple buffers to enable parallel processing. A
client may scan a buffer and expand a row asynchronously
for low latency. When processing of a row has completed,
the codec may perform a carriage return to begin processing
a next row

A pixel of the image may be a true color RGB24 pixel. It
may represent a discrete portion of the image viewable at a
particular angle (between 130° and 220°) from the human
eye.
Update Process

A frame may receive the audio buffer first, followed by
the image data. The audio buffer may be stored until the
image data is swapped fully or progressively based on the
last frame. The codec may start another audio buffer when
the last audio buffer finishes playing, by swapping the next
video buffer into the visible frame buffer. When a progres-
sive image update occurs, the codec swaps it with the visible
previous section of the current frame. The next frame is
swapped when the next audio track finishes playback. In a
low latency environment, a frame may be swapped if the
audio is silent. A session reset may be used to interrupt the
current audio and play different audio.

Whenever the term “at least,” “greater than,” or “greater
than or equal to” precedes the first numerical value in a
series of two or more numerical values, the term “at least,”
“greater than” or “greater than or equal to” applies to each
of the numerical values in that series of numerical values.
For example, greater than or equal to 1, 2, or 3 is equivalent
to greater than or equal to 1, greater than or equal to 2, or
greater than or equal to 3.

Whenever the term “no more than,” “less than,” or “less
than or equal to” precedes the first numerical value in a
series of two or more numerical values, the term “no more
than,” “less than,” or “less than or equal to” applies to each
of the numerical values in that series of numerical values.
For example, less than or equal to 3, 2, or 1 is equivalent to
less than or equal to 3, less than or equal to 2, or less than
or equal to 1.
Computer Systems

The present disclosure provides computer systems that are
programmed to implement methods of the disclosure. FIG.
4 shows a computer system 401 that is programmed or
otherwise configured to provide low-latency data transmis-
sion. The computer system 401 can regulate various aspects
of transmitting data of the present disclosure, such as, for
example, blending image content and encoding data. The
computer system 401 can be an electronic device of a user
or a computer system that is remotely located with respect
to the electronic device. The electronic device can be a
mobile electronic device.

The computer system 401 includes a central processing
unit (CPU, also “processor” and “computer processor”
herein) 405, which can be a single core or multi core

processor, or a plurality of processors for parallel process-
ing. The computer system 401 also includes memory or
memory location 410 (e.g., random-access memory, read-
only memory, flash memory), electronic storage unit 415
(e.g., hard disk), communication interface 420 (e.g., network
adapter) for communicating with one or more other systems,
and peripheral devices 425, such as cache, other memory,
data storage and/or electronic display adapters. The memory
410, storage unit 415, interface 420 and peripheral devices
425 are in communication with the CPU 405 through a
communication bus (solid lines), such as a motherboard. The
storage unit 415 can be a data storage unit (or data reposi-
tory) for storing data. The computer system 401 can be
operatively coupled to a computer network (“network”) 430
with the aid of the communication interface 420. The
network 430 can be the Internet, an internet and/or extranet,
or an intranet and/or extranet that is in communication with
the Internet. The network 430 in some cases is a telecom-
munication and/or data network. The network 430 can
include one or more computer servers, which can enable
distributed computing, such as cloud computing. The net-
work 430, in some cases with the aid of the computer system
401, can implement a peer-to-peer network, which may
enable devices coupled to the computer system 401 to
behave as a client or a server.

The CPU 405 can execute a sequence of machine-read-
able instructions, which can be embodied in a program or
software. The instructions may be stored in a memory
location, such as the memory 410. The instructions can be
directed to the CPU 405, which can subsequently program
or otherwise configure the CPU 405 to implement methods
of the present disclosure. Examples of operations performed
by the CPU 405 can include fetch, decode, execute, and
writeback.

The CPU 405 can be part of a circuit, such as an integrated
circuit. One or more other components of the system 401 can
be included in the circuit. In some cases, the circuit is an
application specific integrated circuit (ASIC).

The storage unit 415 can store files, such as drivers,
libraries and saved programs. The storage unit 415 can store
user data, e.g., user preferences and user programs. The
computer system 401 in some cases can include one or more
additional data storage units that are external to the com-
puter system 401, such as located on a remote server that is
in communication with the computer system 401 through an
intranet or the Internet.

The computer system 401 can communicate with one or
more remote computer systems through the network 430.
For instance, the computer system 401 can communicate
with a remote computer system of a user (e.g., a client
device). Examples of remote computer systems include
personal computers (e.g., portable PC), slate or tablet PC’s
(e.g., Apple® iPad, Samsung® Galaxy Tab), telephones,
Smart phones (e.g., Apple® iPhone, Android-enabled
device, Blackberry®), or personal digital assistants. The
user can access the computer system 401 via the network
430.

Methods as described herein can be implemented by way
of machine (e.g., computer processor) executable code
stored on an electronic storage location of the computer
system 401, such as, for example, on the memory 410 or
electronic storage unit 415. The machine executable or
machine readable code can be provided in the form of
software. During use, the code can be executed by the
processor 405. In some cases, the code can be retrieved from
the storage unit 415 and stored on the memory 410 for ready
access by the processor 405. In some situations, the elec-

US 11,638,040 B2
15 16

5

10

15

20

25

30

35

40

45

50

55

60

65

tronic storage unit 415 can be precluded, and machine-
executable instructions are stored on memory 410.

The code can be pre-compiled and configured for use with
a machine having a processer adapted to execute the code or
can be compiled during runtime. The code can be supplied
in a programming language that can be selected to enable the
code to execute in a pre-compiled or as-compiled fashion.

Aspects of the systems and methods provided herein, such
as the computer system 401, can be embodied in program-
ming. Various aspects of the technology may be thought of
as “products” or “articles of manufacture” typically in the
form of machine (or processor) executable code and/or
associated data that is carried on or embodied in a type of
machine readable medium. Machine-executable code can be
stored on an electronic storage unit, such as memory (e.g.,
read-only memory, random-access memory, flash memory)
or a hard disk. “Storage” type media can include any or all
of the tangible memory of the computers, processors or the
like, or associated modules thereof, such as various semi-
conductor memories, tape drives, disk drives and the like,
which may provide non-transitory storage at any time for the
software programming. All or portions of the software may
at times be communicated through the Internet or various
other telecommunication networks. Such communications,
for example, may enable loading of the software from one
computer or processor into another, for example, from a
management server or host computer into the computer
platform of an application server. Thus, another type of
media that may bear the software elements includes optical,
electrical and electromagnetic waves, such as used across
physical interfaces between local devices, through wired and
optical landline networks and over various air-links. The
physical elements that carry such waves, such as wired or
wireless links, optical links or the like, also may be consid-
ered as media bearing the software. As used herein, unless
restricted to non-transitory, tangible “storage” media, terms
such as computer or machine “readable medium” refer to
any medium that participates in providing instructions to a
processor for execution.

Hence, a machine readable medium, such as computer-
executable code, may take many forms, including but not
limited to, a tangible storage medium, a carrier wave
medium or physical transmission medium. Non-volatile
storage media include, for example, optical or magnetic
disks, such as any of the storage devices in any computer(s)
or the like, such as may be used to implement the databases,
etc. shown in the drawings. Volatile storage media include
dynamic memory, such as main memory of such a computer
platform. Tangible transmission media include coaxial
cables; copper wire and fiber optics, including the wires that
comprise a bus within a computer system. Carrier-wave
transmission media may take the form of electric or elec-
tromagnetic signals, or acoustic or light waves such as those
generated during radio frequency (RF) and infrared (IR) data
communications. Common forms of computer-readable
media therefore include for example: a floppy disk, a flexible
disk, hard disk, magnetic tape, any other magnetic medium,
a CD-ROM, DVD or DVD-ROM, any other optical
medium, punch cards paper tape, any other physical storage
medium with patterns of holes, a RAM, a ROM, a PROM
and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave transporting data or instructions,
cables or links transporting such a carrier wave, or any other
medium from which a computer may read programming
code and/or data. Many of these forms of computer readable
media may be involved in carrying one or more sequences
of one or more instructions to a processor for execution.

The computer system 401 can include or be in commu-
nication with an electronic display 435 that comprises a user
interface (UI) 440 for providing, for example, streaming
video content. Examples of UI’s include, without limitation,
a graphical user interface (GUI) and web-based user inter-
face.

Methods and systems of the present disclosure can be
implemented by way of one or more algorithms. An algo-
rithm can be implemented by way of software upon execu-
tion by the central processing unit 405. The algorithm can,
for example, encode a video transmission.

While preferred embodiments of the present invention
have been shown and described herein, it will be obvious to
those skilled in the art that such embodiments are provided
by way of example only. It is not intended that the invention
be limited by the specific examples provided within the
specification. While the invention has been described with
reference to the aforementioned specification, the descrip-
tions and illustrations of the embodiments herein are not
meant to be construed in a limiting sense. Numerous varia-
tions, changes, and substitutions will now occur to those
skilled in the art without departing from the invention.
Furthermore, it shall be understood that all aspects of the
invention are not limited to the specific depictions, configu-
rations or relative proportions set forth herein which depend
upon a variety of conditions and variables. It should be
understood that various alternatives to the embodiments of
the invention described herein may be employed in practic-
ing the invention. It is therefore contemplated that the
invention shall also cover any such alternatives, modifica-
tions, variations or equivalents. It is intended that the
following claims define the scope of the invention and that
methods and structures within the scope of these claims and
their equivalents be covered thereby.

What is claimed is:
1. A system for providing a low-latency media transmis-

sion, comprising:
one or more servers for providing one or more transmis-

sions of media content, wherein the one or more
transmissions comprise a plurality of video frames;

a client for presenting the one or more transmissions of
the media content, wherein the client includes a soft-
ware application for blending one or more pixels of the
transmissions from one or more of the servers, wherein
the blending the one or more pixels of the transmissions
comprises:

for a first pixel of a first transmission, producing a first
alpha from a checksum of equivalences of red, green,
and blue components;

processing the red, green, and blue components of the first
pixel at least in part by multiplying the red, green, and
blue components of the first pixel of the first transmis-
sion by the first alpha; and

generating summed red, green, and blue components of a
blended pixel from at least the processed red, green,
and blue components of the first pixel;

wherein the client further includes a cache for storing a
downloaded media file;

a codec for compressing the one or more transmissions,
wherein the codec is installed on the each of client and
the server, wherein the codec does not require a session
header, negotiation header, or frame header; and

a dedicated communication channel connecting the client
to the server.

2. The system of claim 1, wherein the client is a thin
client.

US 11,638,040 B2
17 18

5

10

15

20

25

30

35

40

45

50

55

60

65

3. The system of claim 1, wherein herein the first trans-
mission is media content from a first widget and the second
transmission is media content from a second widget.

4. The method of claim 1, wherein the blending the one
or more pixels of the transmissions further comprises:

for a second pixel of a second transmission, producing a
second alpha from a checksum of equivalences of red,
green, and blue components;

processing the red, green, and blue components of the
second pixel at least in part by multiplying the red,
green, and blue components of the second pixel of the
second transmission by the second alpha; and

summing the processed red, green, and blue components
of the second pixel to the generated summed red, green,
and blue components of the blended pixel.

5. A system for providing a low-latency media transmis-
sion, comprising:

one or more servers for providing one or more transmis-
sions of media content, wherein the one or more
transmissions comprise a plurality of video frames;

a client for presenting the one or more transmissions of
the media content, wherein the client includes a soft-
ware application for blending one or more pixels of the
transmissions from one or more of the servers, wherein
the blending the one or more pixels of the transmissions
comprises:

for a first pixel of a first transmission, producing a first
alpha from a checksum of equivalences of red, green,
and blue components;

processing the red, green, and blue components of the first
pixel at least in part by multiplying the red, green, and
blue components of the first pixel of the first transmis-
sion by the first alpha; and

generating summed red, green, and blue components of a
blended pixel from at least the processed red, green,
and blue components of the first pixel,

wherein the client further includes a cache for storing a
downloaded media file comprising an image with an
arbitrary resolution and a view port for viewing por-
tions of the downloaded media file;

a codec for compressing the one or more transmissions,
wherein the codec is installed on each of the client and
the server, wherein the codec does not require a session
header, negotiation header, or frame header; and

a dedicated communication channel connecting the client
to the server.

6. The system of claim 5, wherein the downloaded media
file is entirely downloaded prior to viewing.

7. The system of claim 5, wherein the view port is capable
of responding to a scroll by a user to present local content
of the downloaded media file.

8. The system of claim 5, wherein local content is
presented by adjusting an offset in the cache.

9. A system for providing a low-latency media transmis-
sion, comprising:

one or more servers for providing one or more transmis-
sions of media content, wherein the one or more
transmissions comprise a plurality of video frames;

a client for presenting the one or more transmissions of
the media content, wherein the client includes a soft-
ware application for blending one or more pixels of the
transmissions from one or more of the servers, wherein
the blending the one or more pixels of the transmissions
comprises:

for a first pixel of a first transmission, producing a first
alpha from a checksum of equivalences of red, green,
and blue components;

processing the red, green, and blue components of the first
pixel at least in part by multiplying the red, green, and
blue components of the first pixel of the first transmis-
sion by the first alpha; and

generating summed red, green, and blue components of a
blended pixel from at least the processed red, green,
and blue components of the first pixel, wherein the
client further includes a cache for storing a downloaded
media file;

a codec for compressing the one or more transmissions,
wherein the codec does not use a negotiation header,
session header, or frame header during processing of
the one or more transmissions, wherein the codec is
configured to not place a portion of a transmission of
the one or more transmissions in a buffer; wherein the
codec is installed on each of the client and the server;
and

a dedicated communication channel connecting the client
to the server.

10. The system of claim 9, wherein the codec comprises
an encoder and a decoder.

11. The system of claim 10, wherein the encoder com-
pares a current frame to a previous frame and encodes and
decodes changes using a lookup table.

12. The system of claim 11, wherein the encoder imple-
ments a low pass filter to soften sharp changes in color from
the previous frame to the current frame.

13. The system of claim 11, wherein comparing a current
frame to a previous frame comprises calculating difference
residuals.

14. The system of claim 13, wherein run length encoding
is applied to the difference residuals.

15. The system of claim 14, wherein the encoder produces
a compressed file in part from the run length encoded
difference residuals.

16. The system of claim 11, wherein the lookup table is
configured to provide a location of a corresponding pixel of
a reference frame, pixels from a predefined palette, or a
location of an offset pixel of a reference frame.

17. The system of claim 10, wherein the encoder transmits
audio interleaved with higher priority than the video frames.

18. The system of claim 10, wherein the encoder separates
a video frame of the plurality of video frames into lines of
pixels, and further separates the lines of pixels into portions,
wherein the portions are processed using parallelism.

* * * * *

US 11,638,040 B2
19 20

5

10

15

20

25

30

35

40

45

50

55

	E_Grant_Covers_All_508 5
	E_Grant_Covers_All_508 6

		USPTO Director
	2023-04-24T14:14:19-0400
	United States Patent and Trademark Office
	United States Patent and Trademark Office
	Digitally Sealed

